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Neha Ayyalapu
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Abstract

Machine learning has proven to be an invaluable tool for characterizing the stability of planets in simplified
planetary systems. In this work, we investigate the performance of a machine learning classifier on tightly-
packed systems containing a rich diversity of planets, from Earths to Jupiters. Using information derived
from short numerical simulations about a planet’s early orbital evolution and its relationship with the most
massive planets in the system, we train a random forest classifier to predict instability with a > 88 percent
accuracy. Our classifier relies on relative planet masses and the standard deviation of eccentricity for much
of its predictive power. Most misclassified planets lie along a multi-dimensional boundary between stable
and unstable planets, indicating that their early orbital evolution is ambiguous. The major reason for mis-
classification in this work is timescale: because our classifier uses information from only the first 137 years
of simulation data, it is blind to late time interactions that cause or prevent instability. Machine learning
methods like those utilized in this work provide powerful tools to complement numerical simulations across

a wide range of planetary architectures.



1 Introduction

Astronomers throughout history have speculated on the celestial dances of the planets. Yet, despite over
400 years of effort, understanding the evolution of planetary orbits remains an intricate, computationally

expensive, and analytically unsolved problem.

1.1 Exoplanets

An exoplanet, or extrasolar planet, is a planet that lies beyond our Solar System. Since 1995, scientists have
discovered more than 4,000 exoplanets with a variety of detection methods (Mayor & Queloz, 1995).

There have been five detection methods used to discover exoplanets: radial velocity, transit, direct imag-
ing, gravitational microlensing, and astrometry. The transit and radial velocity methods are responsible for
the vast majority of these discoveries. When a planet passes (or transits) between an observer and the cen-
tral star it orbits, the planet blocks some of the light from the star. With the transit method, this minuscule
decrease in brightness can suggest the presence of an exoplanet. The radial velocity method is dependent
on the the gravitational force the planet exerts on the star: he planet’s gravity causes the star to *wobble’
in space. The larger the planet, the more pronounced the resulting wobble is. When this phenomenon is
observed with a telescope, it effects the the star’s light spectrum. As the star moves in the direction of the
observer, the color shifts towards blue; when moving away, it shifts towards red. This change in color is
called redshift, and occurs because of the change in wavelength (of visible light waves) as the planet orbits
around the star. By observing these changes in the color of light, astronomers are able to detect the presence
of a planet.

Besides their use for discovering and validating the existence of exoplanets, these methods (especially
when used together) offer vital information about both an individual planet and the exoplanetary system
as a whole. They can inform the planet’s mass, density, size, and distance from central star. With this,
astronomers are often able to make determinations about a planet’s composition, structure, and atmospheric
composition.

Exoplanet discovery missions such as TESS and Kepler have revealed a vast diversity of exoplanets in our
galaxy. Astronomers have seen compositions ranging from rocky (like Earth) to gas-rich (such as Jupiter).

There have been planets dominated by water or ice (Neptune) and others by carbon or iron (like Mercury).

Based on Smullen & Ayyalapu 2021 (submitted to Monthly Notices of the Royal Astronomical Society)



While these worlds are made of elements similar to those present in our Solar System, we have yet to find
an entire system similar to our own. Understanding the architectures of real exoplanetary systems—and how
that might relate to our own Solar System-requires us to understand the dynamics of diverse exoplanetary

systems.

1.2 Planetary Dynamics

Orbits in space (the paths that bodies travel as they move around one another under the influence of gravity)
are characterized by six Keplerian orbital elements—semi-major axis, eccentricity, inclination, argument of
pericenter, longitude of ascending node, and true anomaly—which describe the time-dependent position of
one body around another. Semi-major axis is a measure of the average extent of an orbit. The eccentricity
is the ellipticity of the orbit, where e = 0 is a circle. Inclination measures the tilt of an orbit relative to a
reference plane. The argument of pericenter is the location of the closest approach of an orbit relative to
the point it crosses the reference plane. Longitude of ascending node is the angle between the reference
direction and the point at which the orbit crosses from under the reference plane to over it, and true anomaly
is the position of the planet at the current time.

The motions of bodies in the sky have been of interest since the ancient Greeks used circular orbits to
describe the motion of the planets, the Moon, and the Sun. Centuries after the Ptolemaic model, in the early
1600s, Johannes Kepler developed the modern theory of orbits and the three laws of planetary motion. Orbits
are, arguably, even more critical to understand today than they were hundreds of years ago. They are the
easiest property to measure for exoplanetary systems, and, as an intrinsic component of our understanding
of planets, they can help us understand the formation and long-term evolution of planets.

Decades after Kepler’s laws of planetary motion, Isaac Newton proposed his law of universal gravitation,
which describes the effects of gravity between two bodies. Combined, Kepler and Newton’s work revolu-
tionized celestial mechanics and left an open question about the long-term stability of our Solar System: do
small gravitational perturbations between planets settle over large timescales or accumulate until a planet is

rendered unstable?

Signatures of Dynamical Instability

Dynamical instability has been defined in several different ways. Some works assume that a system is
experiencing instability when planet orbits come within one Hill radius of each other; others assume that

instability occurs when two orbits cross. For this work, I assume that instability manifests as collisions



(either planet-planet or planet-star) or ejections from the planetary system.

Any system of three or more planets has no formally predictable solution. However, there are cases in
which we can estimate the long-term orbital stability of a system. The simplest case is the Hill stability of
two planets (masses m; and my) on circular orbits (at distances a; and a,) around a star of mass M. If we

define the spacing for stable orbits in terms of the mutual Hill radius (Ry ,,), where Ry ,, is defined as

R _ my+my 1/3611—1—!12 (1.1)
Hym M 2 '

we can then define the dimensionless dynamical spacing A of the two planets as

a —a;
A= . (1.2)
RH,m

Gladman (1993) calculates that two planets will be stable for all time as long as they satisfy A > 2+/3. For
systems of three or more planets, it has been found that planets must be separated by A = 10 for Gyr stability
(Chambers et al., 1996).

Hill stability is not the only metric to predict stability. Mean motion resonance overlap is found to lead

to instability when the following condition is met (Wisdom, 1980; Deck et al., 2013)

B 2/7
<M) < 1.46 <ml—|—mg) ) (1.3)
aj M

Other works rely on short numerical simulations instead of initial conditions to predict a system’s insta-
bility. For instance, chaos indicators such as MENGO (Mean Exponential Growth factor of Nearby Orbits)
have been found to correlate with instability (Cincotta et al., 2003). No method has been able to theoreti-
cally predict the infinite stability of all planetary systems, and it is likely that none ever will. However, each

metric provides some insight into the probable future evolution of a planet.

Numerical Simulations

Research in the past few decades has leveraged numerical N-body simulations to understand the role of
dynamical evolution in shaping observed populations of exoplanets. For instance, dynamical scattering has
been proposed to sculpt the observed distributions of planetary orbits and masses. Works such as Chambers
etal. (1996), Faber & Quillen (2007), Smith & Lissauer (2009), Shikita et al. (2010), Pu & Wu (2015), Ober-
tas et al. (2017), Wu et al. (2019), Gratia & Lissauer (2021) and Lissauer & Gavino (2021), among others,

have found the relationship that increased dynamical planet spacing (discussed further in Section 1.2) leads



to increased stability times. Other works including Juri¢ & Tremaine (2008), Chatterjee et al. (2008), and
Raymond et al. (2010) find that dynamical scattering leads to broader eccentricity distributions of planetary
orbits that may match some subset of exoplanet observations. Mean motion resonances (and mean motion
resonance overlap) also play a substantial role in planetary stability. Resonance overlap leads to shorter
instability timescales as the forcing on a planet is much stronger and more chaotic (e.g., Chambers et al.,
1996; Lissauer et al., 2011a; Morrison & Kratter, 2016; Obertas et al., 2017; Wu et al., 2019; Lissauer &
Gavino, 2021). Numerical simulations have also been used to infer if planetary systems form with too many
planets (overpacked; susceptible to instability), if they form with so many planets that moving one would
introduce instability (maximally packed), if they form with enough planets that adding one more would
cause instability (minimally packed), or if they form with few enough planets that more could be introduced
without issue (sparse) (e.g., Barnes & Quinn, 2004; Fang & Margot, 2013; Kratter & Shannon, 2014; Agnew
et al., 2019).

The major drawback to these types of numerical simulations of planetary interactions is that the problem
is computationally challenging when studying the entire parameter space. Many of the aforementioned
works therefore reduce the complexity of the problem and study systems with a limited number of planets
(typically three to five), or only equal mass planets, or planets with equal dynamical spacing. This causes
ambiguity in the applicability of these results directly to observed exoplanetary systems, which are never as

idealized as simulations.

1.3 Machine Learning Applications

With the diversity of planetary systems that have been discovered and characterized to date, it becomes
critical to understand the dynamical interactions and evolution of planets so that we can better infer both the
processes that form these systems and their future evolution.

Machine learning can help broaden the parameter space in which we can understand detailed scattering
outcomes by reducing computational cost of individual simulations and by introducing high-dimensional
sets of initial conditions in simulations. Tamayo et al. (2016) was among the first works to combine machine
learning and numerical simulation for predicting instability; they predicted stability of planets in planetary
systems containing three 5 My, planets with an average accuracy = 90 percent. Since then, machine learning
methods have been used to great effect in orbital dynamics. The applications have been used to predict the
stability of circumbinary planets (Lam & Kipping, 2018), classify asteroid families (Carruba et al., 2020),

classify Kuiper belt objects (Smullen & Volk, 2020), predict long-term instability in diverse three planet



systems (Tamayo et al., 2020), and to directly predict the instability time of three planet systems (Cranmer
et al., 2021), among others.

In this paper, I present a machine learning classifier trained on the very early timescales of highly
diverse, overpacked systems of 10 planets that has learned to predict the instability of individual planets.
I provide an overview of my simulations, my creation of dynamically-motivated features upon which to
train the classifier, and the training of the classifier itself in Section 2. I then examine the performance of
the classifier, including which features are most indicative of stability, in Section 3. Finally, in Section 4, I

discuss the reasons that my classifier can fail and compare it to similar methods from the literature.

2 Methods

In this section, I describe the methods used in this paper. I begin with numerical simulations of planetary
systems and then derive metrics from those simulations that are then used in my machine learning method.
Finally, I give a description of the random forest classifier method used to predict stability and the optimiza-

tion thereof.

2.1 Simulations

The planetary systems used in this work come from the ‘Mordaisini’ single-star ensemble from Smullen
et al. (2016). Ten planets were placed around a 1 M, star and integrated to 10 Myr using the Gauss-Radau
variable timestep integrator in the MERCURY6 N-body integration package (Chambers & Migliorini, 1997).
The initial orbital semi-major axis (@) and masses for each of the ten planets in each system were drawn
from the distributions calculated in the population synthesis models from Mordasini et al. (2009a,b) as seen
in Figure 2.1.

The semi-major axes span a range from about 0.1 to 15 a.u. with a peak at 3 a.u. (note that, because the
comparison in Smullen et al. 2016 was to circumbinary planets, I do not have a population of short period
inner planets, e.g., Lissauer et al., 2011b). Planet masses span 1 — 10* M,,; there is a dominant peak at low
mass (~1 —2 Mg) and small peaks around 1 Neptune mass and 1 Jupiter mass. Eccentricity and inclination
are drawn from Rayleigh distributions with scale parameters of e = 0.1 and i = 0.73°. The remaining orbital
elements, argument of pericenter and angle of the ascending node, are drawn from a uniform distribution.
Planets are allowed to eject from the system (when they reach a distance of more than 1000 au from the

star), collide with the central star, or collide with another planet. The system state is output every 5000 days
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Figure 2.1: Orbital properties for the planet population used in this work. From left to right, the panels show semi-
major axis, eccentricity, inclination, and mass. The black line shows the initial conditions, while the green line shows
the orbital elements at 10 time outputs (= 137 yr), which is the averaging window used for computing features. Planets
quickly begin to experience scattering events with other planets in the systems, as seen by the rapid broadening of the
orbital element distributions.

(= 13.7yr).

These planetary systems are designed to be overpacked; as such, a large amount of orbital evolution
and instability is expected. Planetary systems in this sample finish the 10 Myr simulations with an average
of three planets per system, although individual system multiplicities range from 1-8 planets. About 70
percent of unstable planets are lost in the first 10° yr. Nearly half of all planets are lost via ejections, while
about twice as many of the remaining unstable planets suffer collisions with other planets (~14 percent of
all planets) than collisions with the central star (~8 percent of all planets). For the purpose of this work,
I consider a planet to be stable if it lasts to 10 Myr and unstable if it otherwise ejects or collides before

10 Myr.

2.2 Derived Features

Machine learning methods utilize features of the data, which, for the random forest classification method
used herein, are a set of reduced quantities derived from the simulations. In this section, I describe the
choice and derivation of the twelve features that are used in this work to classify orbital instability.

Smullen et al. (2016) notes that the most massive planet in a system drives the final system multiplicity
in these highly diverse planetary systems. Therefore, I compute features with the idea that the three most
massive planets in the system likely have the largest influence on the dynamical outcomes of other planets.
The planets in my systems span a large range in masses and semi-major axis, so I reduce bias in the set
of features by ensuring all features are dimensionless. In addition to considering the osculating orbital
elements, I derive mass ratio, semi-major axis ratio, and spacing in mutual Hill radii (equation 1.2) with the

three most massive planets.



Table 2.1: Features used for classification

Symbolic Explanation

Description

Initial m/m; Initial mass ratio with most massive planet
Initial m/my  Initial mass ratio with 2nd most massive planet
Initial m/ms3  Initial mass ratio with 3rd most massive planet

max(e) Maximum e in time

o(e) Std. dev. of e in time

o(a/ay) Std. dev. of a ratio with most massive planet in time
o(a/ay) Std. dev. of a ratio with 2nd most massive planet in time
o(a/a3) Std. dev. of a ratio with 3rd most massive planet in time
o(An,) Std. dev. of A with most massive planet in time

o(Am,) Std. dev. of A with 2nd most massive planet in time
o(An;) Std. dev. of A with 3rd most massive planet in time
CV(i) Coefficient of variation (mean/std. dev) of i in time

To best leverage information from the early orbital histories of planets in the simulations, I then create
features by combining information over several time outputs. The simulations record the six orbital ele-
ments for each individual planet. Independently, these quantities offer minimal information about the future
interactions between planets, so it is useful to compute dynamically-motivated quantities for each planet in
the selected time domain.

I explore a wide set of potential features, including initial and final values, and the minimum, maximum,
mean, standard deviation, and coefficient of variation of values in time. Each of these may encode infor-
mation which could be significant in predicting orbital stability. I investigate classifier performance with
several different time averages spanning 3 to 100 time outputs. I find that 10 time outputs (137 years) is the
best optimization of time and performance; 137 years is the fiducial time average used throughout the rest
of this paper. This time span equates to approximately 4300 orbits of an inner planet, 25 orbits of an average
planet, and two orbits of an outer planet.

An excessive number of features can make the classifier output more difficult to interpret and can cause
overfitting, which then impacts the accuracy and usability of my model. To reduce the ;100 potential
features to a smaller set, I use metrics of my classifier’s feature importance (how significantly the computed
features contribute to the classification) and the feature correlation coefficients to inform the final feature
set. The matrix of correlation coefficients instructs us on the orthogonality between any two features; my
final feature list aims to minimize correlated variables to avoid ‘double counting’ features by giving excess
statistical weight with highly correlated quantities. The final set of features that are both significant to the

classifier and minimally correlated are listed in Table 2.1.



2.3 Machine Learning

Machine learning classification is a family of methods that sort objects into different classes (categories)
based on combinations of their features (the data attributed to each object). Broadly, machine learning is
based on the idea that machines can learn from data, identify patterns, and make classifications on new data
using these patterns.

I select the gradient boosting random forest classifier method, which is a supervised machine learning
algorithm. Versions of this algorithm have been utilized in previous works such as Tamayo et al. (2016),
Tamayo et al. (2020), and Smullen & Volk (2020). As a supervised algorithm, it first trains on data where
it knows the correct classes—in this case, stable or unstable— and can then be used to predict the classes
of unseen data. A random forest classifier creates an ensemble of decision trees, a flowchart-like structure
with binary nodes representing specific features in the data. It then averages the outcome of each tree to
determine the classification.

To create a machine learning model that can make predictions on data, I use a training-testing scheme.
The classifier trains on a fraction of the data set to learn the features of specific classes. It then fests on
the remaining data to estimate how well the model fits. When I begin the training process, an arbitrary
‘line’ is drawn through the multiple dimensions of the feature data. As training progresses, this line moves
closer to the correct separation of the classes. Testing then tells us how well the model performs on unseen
data. A standard testing-training split is 70 percent training data and 30 percent testing data, which I adopt
here (my results are statistically similar with training fractions higher than 70 percent). Training/testing sets
are typically split on a random sample of all objects. However, to preserve a valid testing set on an entire
planetary system, I split the sample randomly by system. Table 2.2 shows a breakdown of the planetary data
used in both the training and testing sets, with a breakdown by planet fate.

I refine the hyperparameters (the variables that tell the classifier how to behave) to make small improve-
ments to the accuracy of the classifier. To do so, I use a 5-fold cross validation grid search. The data is first
divided into five ‘folds’ (randomly split equal fractions of the data). The classifier is then trained on four of
five folds and tested on the fifth. In each of the five iterations per set of hyperparameters, a different fold is
used as the testing set. The final result is the average of score between the five folds. A grid search coupled
with the cross validation then allows us to optimize the best hyperparameters for a specific algorithm and
set of features.

I optimize for four hyperparameters: learning rate, maximum tree depth, maximum features, and num-

ber of estimators. The learning rate controls how quickly the classifier adjust the weights of the parameters.



Table 2.2: Data used in classifier. Columns show the total number of planets in each sample and the counts
of stable planets, unstable planets, ejected planets, planets suffering collisions with the star, and planets
colliding with other planets

N Nstable Nunstable Nej Ns—col Np—col
Testing 700 198 502 344 106 52
Training 300 88 212 144 37 31
Total 1000 286 714 488 143 83

Maximum tree depth is the number of vertical nodes in a given tree; setting a maximum depth limits com-
plexity and prevents overfitting. The maximum features parameter controls the size of the feature subsets to
consider when splitting at a node. Finally, a Random Forest is comprised of several individual trees, and the
number of estimators controls the number of trees used in the forest. The optimal solution I arrive at has a
learning rate of 0.025, a maximum tree depth of 3, a maximum number of features scaled by the square root

of the number of samples, and 130 estimators.

Final Classifier Performance

Upon refining the hyperparameters, my classifier achieves an overall accuracy of 88.33 percent; this accu-
racy determines how many items I classified correctly out of all items I classified.

While accuracy is a common measurement of correctness, there are several other metrics useful to
evaluate the performance of a machine learning classifier. Precision, for instance is a measure of how many
correct samples a classifier returns out of all the items it returns in a class; it is a measure of how valid the
results are. Recall, is a measure of how many positive cases the classifier correctly predicted; it is a measure
of how complete or sensitive my classifier is.

For stable planets, precision is 86.3 percent and recall is 71.6 percent. For unstable planets, precision
is 89.0 percent and the recall is 95.3 percent. This indicates that my classifier is notably more sensitive to
signs instability than it is to signs of long-term stability, which is unsurprising given the quantity of unstable
vs. stable planets in the planet population. However, I am still able to achieve relatively high accuracy on

all types of planets (further discussed in Section 4.1).

3 Results

In this section, I describe the characteristics of my machine learning classifier and its performance on planets

of different properties. Throughout the rest of this paper, I will use the following terms for brevity: CSS
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indicates planets that were correctly classified as stable, CUU indicates planets that were correctly classified
as unstable, MSU indicates planets that were misclassified as stable but have a true classification of unstable,

and MUS indicates planets that were misclassified as unstable but were stable to 10 Myr in the simulations.

3.1 Feature Importance and Classification Probability

Although I initially tested a wide range of features, I find the relatively small set of dimensionless features
shown in Figure 3.1 allow the classifier to perform with an accuracy above 88 percent. Features used by
a random forest classifier can be ranked in order of their importance to the classifier, where the sum of all
feature importances adds up to 100 percent. My fiducial classifier relies most upon the mass ratios and
eccentricities of a planet.

The initial mass ratio with the first, second, and third most massive planets in the entire planetary system
are the first, second, and fourth most important features, respectively. These three features alone account
for more than 45 percent of the total predictive power of the classifier. In my model, the mass ratio with the
most massive planet in the system is the most important feature, followed very closely by the mass ratio with
the second most massive planet in the system. The significance of these two features comes in part from the
structure of the initial planetary systems. About 14 percent of all planets in the simulations are Jupiter mass
planets or larger, and 22 percent are Saturn mass or larger. Therefore, there are, on average, two gas giants
in each planetary system. These gas giants will dominate the orbital evolution of nearby smaller planets,

with the impact being more extreme with a larger mass difference.
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As opposed to the mass ratio, which may be thought of as being related to the potential for orbital in-
stability, the variations in eccentricity (which are manifested in my feature list as o(e) and max(e)) and
semi-major axis (standard deviation of semi-major axis ratios with the massive planets) are related to dy-
namic scattering events early in the simulations. Large variations in eccentricity arise from orbital evolution
and frequently predict later instability. The standard deviation of eccentricity—the third most important
feature—and maximum eccentricity account for about 20 percent of the total predictive power of my classi-
fier. The standard deviation of the semi-major axis ratio with the most massive planet (the planet typically
doing the strongest scattering) accounts for over 8 percent of the classifier’s predictive power.

The remaining feature importances include information about additional semi-major axis ratios, spac-
ing in mutual Hill radii, and inclination. While these features are not individually very significant, their
exclusion from the classifier leads to a substantially worse result. All of these additional features include
some measure of the time variability of orbital evolution: the standard deviation of semi-major axis ratios
measures how the planet separations are physically changing, the standard deviation of spacing in mutual
Hill radii indicates how the dynamical planet separations are changing, and the coefficient of variation of
inclination is an indication of scattering.

In addition to knowing what information the classifier needs to output an overall accurate classification,
it is useful to know how reliable the classifications are for individual planets. To this end, I show the
probability distributions of the four types of classifications (CSS, CUU, MUS, and MSU) in Figure 3.2.
Over 60 percent of CUU planets have a probability of class membership greater than 26 (~ 95 percent), and

about 40 percent of CSS classifications are above 20. Conversely, less than 20 percent of unstable planets
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have a high probability of belonging to their identified class. Both of the misclassified curves rise steeply
at low probabilities. About 20 — 40 percent of MUS planets have relatively high unstable classification
probabilities: these are planets that undergo initial scattering in the simulation but then finish the simulation

on a stable orbit. The reasons for misclassification will be examined further in Section 4.1.

3.2 Classifier Performance and Planet Properties

Classification depends on a high dimensional combination of features, but I can gain some intuition about
how the classifier works by looking at individual features of planets. Figure 3.3 shows the probability of
stable classification plotted against the most important feature, the mass ratio with the most massive planet.
Typically, stable planets have higher mass ratios and unstable planets have lower mass ratios, which follows
from a simple analysis of the scattering outcome of two planets: the more massive planet will have less
of an impacted orbit due to equal but opposite forces. Most of the misclassified planets trend to different
masses than expected; MUS planets generally exhibit lower mass ratios, while the MSU planets trend toward
higher mass ratios. My classifier assigns the highest probabilities to the extremes: very massive planets
typically have a very high (> 80 percent) probability of a stable classification, while the lowest mass planets
typically have a high probability of an unstable classification. Planets with mid-range mass ratios tend to
have somewhat lower probabilities, suggesting that the classifier finds their combination of features more
ambiguous.

Figure 3.4 shows the parameter space covered by the first and third most important features; here, the
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‘thought process’ of the classifier becomes even more apparent. All of the misclassified planets lie along
the manifold separating the stable and unstable planets, or they lie in a space not populated by many other
planets. This again demonstrates that my classifier is very good at identifying obviously stable and unstable

planets but may encounter ambiguity in the less common boundary cases.

3.3 Classifier Performance and System Multiplicity

The fiducial classifier in this work, while only considering individual planets, has features derived from the
entire planetary system. Figure 3.5 shows the classification accuracy as a function of system multiplicity. I
find very high overall accuracy in planet classification for low multiplicity systems (1-3 planets remaining
at 10 Myr): the majority of low multiplicity systems have more than 80 percent of all planets correctly
classified. These are representative of the most common systems in the simulation ensemble. As the final
multiplicity increases, my overall classification accuracy in a system decreases. Even at relatively high
multiplicity, however, I am able to accurately classify unstable planets with an accuracy greater than 75
percent. My classifier sees the worst performance with stable planets, an unsurprising trend given these
types of planets are both less represented in the training set (leading to less statistical significance from which
the classifier can learn) and that these planets can still undergo scattering events that resemble catastrophic
instability on short timescales.

The highest multiplicity systems (one with 8 planets remaining at 10 Myr and two with 6 planets re-

maining) consistently have the poorest performance across all classifiers tested in the course of this work.
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Figure 3.5: Final system multiplicity vs the fraction of correct classifications per system. The color of a point
represents the fraction of systems with a given multiplicity while size of the point scales with the total number of
systems. The panels, from top to bottom, show the fraction of all planets in a system correctly classified, the fraction
of unstable planets in a system correctly classified, and the fraction of stable planets in a system correctly classified.
My classifier performs very well on unstable planets but has a lower accuracy on high multiplicity systems.
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These systems are (as anticipated) outliers from the majority of other systems in the ensemble. The eight
planet system contains no Jovian planets, and the two most massive planets are ice giants; the remaining
planets in the system are Earths or super Earths. In the two six planet systems, both have six or more super
Earths, and the high mass planets are mostly Neptune mass planets. One has a single Jupiter mass planet.
All of these systems exhibit substantial planet-planet scattering over a majority of the 10 Myr evolution, but
few (if any) of the planets are massive enough to cause scattering strong enough to cause ejection. As such,
collisions dominate the planet loss mechanisms in these systems: the eight planet system loses both unstable
planets to collisions and the six planet systems each lose three of four unstable planets to collisions. The
classifier does not have enough examples of the orbital evolution of such systems to perform an accurate

classification.

4 Discussion

In this section, I investigate the major reasons for misclassification by my classifier and then compare the

results of this work with other similar investigations.

4.1 Reasons for Misclassification

There are two major reasons that my classifier fails to correctly predict the fate of planets in the simulations:
rarity and time scale.

Rarity is the lack of many representative examples in the simulation ensemble. Rarity is the cause
of most of the MUS misclassifications. Of the 10 total misclassified unstable planets, seven were lost to
collisions. Instability due to collision accounts for only 22 percent of planets lost in the training set, and
collisions are often challenging to identify before they happen. A collision can occur at any time to planets of
any mass, and they can happen in many different orbital states, such as when a planet is already undergoing
some sort of catastrophic instability (i.e., a planet already ejecting from the system) or those just beginning to
scatter. Due to the relative inhomogeneity of planets suffering collisions, there is no statistically strong basis
for the classifier to learn what a collision looks like. I could potentially increase the statistical significance
of collisional examples with more simulations in the ensemble.

The other major reason for misclassification of planets in the testing set is timescale. Because my
classifier uses a only small fraction of a planet’s orbital history, it is blind to late-time orbital interactions or

dynamical evolution caused through a chain of multiple interactions. Figure 4.1 shows the fraction of planets
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Figure 4.1:  Classifica-
tion accuracy as a func-
tion of instability time.
Each bar shows the frac-
tion of planets in a bin
that were correctly classi-
fied as a function of in-
stability time. The clas-
sifier achieves high accu-
racy in identifying plan-
ets that suffer catastrophic
instability in the first 10
years but performs worse
on objects that have inter-
actions at later times.
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correctly classified as a function of instability time. For short to intermediate instability times (0 — 103 yr),
I have very high classification accuracy. Planets that suffer instability on these timescales likely have some
indicator of future orbital evolution in their features: either they are too close to a massive planet, or their
orbit is undergoing change on short timescales. I see a substantial decrease in classification accuracy with
increasing instability time. Only 72 percent of stable planets are correctly identified by my classifier.

Examples of this timescale problem are shown for both stable and unstable planets in Figure 4.2. On
the time scale relevant to the classifier (137 years), the MSU planet appears to be nearly static in a and
e. It is not until a close interaction with several other planets at about 0.3 Myr that the MUS planet suffers
large variations in eccentricity and semi-major axis. Conversely, the two MUS planets display visible orbital
change in the first few hundred years. A late time interaction after 1 Myr causes their orbits finally settle
into a stable configuration.

The issue of time scale will persist with any machine learning method that utilizes a subset of a simu-
lation to predict instability. Due to the chaotic nature of orbital interactions, there is no easy way to predict

Myr to Gyr orbital interactions, especially in my highly diverse planetary systems.

4.2 Comparison With Other Works

In this paper, I have presented a machine learning classifier designed to predict instability that has been
trained on highly diverse planetary systems (in terms of mass and dynamical spacing). I now compare
the performance of my classifier against the performance of other similar methods. Tamayo et al. (2016)

and Tamayo et al. (2020) develop gradient boosting classifiers to predict the dissolution of compact three
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planet systems. Tamayo et al. (2020) compares the SPOCK classifier from that work with simple classifiers
derived from constraints from MENGO (Cincotta et al., 2003), AMD (Laskar, 2000), and the Hill criterion
(Chambers et al., 1996). I can utilize the ‘area under the curve’ (AUC) metric, which is a measure of
relative model performance on the given data, to compare with the performance of three methods presented
in Tamayo et al. (2020). A perfect model would have an AUC of 1 and a model that returns a random value
(no informed classification) would have an AUC of 0.5. Tamayo et al. (2020) report that SPOCK has an
AUC of 0.98, MENGO has an AUC of 0.95, and Hill has an AUC of 0.82. Comparatively, my classifier has
an AUC of 0.91. Given the substantial differences in the types of systems being classified in these works,
the fiducial classifier presented in this work performs quite well when compared to other models in the field.

Tamayo et al. (2020) and Cranmer et al. (2021) present a method of identifying stability in systems with
multiplicities higher than three by classifying all three planet sub-systems in the high multiplicity system
using their model (which has been trained on three planet systems). The general idea, inspired by Chambers
et al. (1996), states that neighboring planets have the most impact on a given planet’s stability. Because
I have classified systems of ten planets using the dynamical influence of the most massive planets as the
important features in determining stability, I ask the reverse of the Tamayo et al. (2020) question: is the
influence of neighboring planets (effectively, the three planet sub-system) important for stability in my anal-
ysis? Figure 4.3 shows all of the 3-planet sub-systems in the 30 ten planet systems in my testing set. I
separate them into categories based on the number of the three most massive planets that exist in the sub-
system. If the neighboring planets were the most important for determining stability, I would expect that

sub-systems without any of the most massive planets to have substantially fewer planets correctly classified.
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Figure 4.3: Classification accuracy for three planet sub-systems. Each bar color denotes three planet sub-systems
that contain none of the three most massive planets in the parent 10 planet system (dark blue), one of the three most
massive planets (purple), two of the three most massive planets (teal) or all three of the most massive planets (light
green). The horizontal axis shows the number of planets correctly classified in the three planet system. There is little
dependence in classification accuracy on the presence of a neighboring massive planet.

Instead, I see that the fraction of planets correctly classified is roughly constant (within statistical uncer-
tainty) regardless of the number of neighbors that were included in the feature set. This suggests that, for
systems with a substantial planet mass disparity (such as the Solar System or the planetary systems used in
this work), the most massive planets play an important role in determining the stability of all planets in the

system.

5 Conclusion

In this work, I use numerical simulations of diverse planetary systems to train a random forest machine
learning classifier to predict the stability of individual planets. I derive dynamically motivated features from

the simulations based on a 137 year window. I find the following:

1. Using only twelve features based on a planet’s orbit and its relationship to the three most massive
planets in the system, I am able to identify unstable planets with a > 88 percent accuracy. The most
predictive power comes from the mass ratios with the three most massive planets in the system and

from the standard deviation of a planet’s eccentricity. My classifier tends to assign higher probabilities
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to planets that are correctly classified.

2. Misclassified planets tend to lie along boundaries in feature space, indicating that their orbital evolu-
tion is somewhat ambiguous. The classifier performs better on unstable planets (95 percent accuracy)

than stable planets (72 percent accuracy) due to the larger statistical sample in the planet ensemble.

3. Ifind that the major reason for misclassification by the classifier is the short time window upon which
I compute features. Due to continuing orbital interactions between the ten planets of varied mass
in these systems, the classifier has no way of predicting chaotic interactions at late times. Other
misclassifications arise due to the rarity of interactions like collisions in the ensemble; the classifier
does not have sufficient examples to create a robust representation of these events. Some further
accuracy could likely be gained with a larger number of systems in both the training and testing sets,
but time scales will always be a fundamental limit on the accuracy of machine learning methods such

as used herein.

Machine learning has been shown to be a valuable addition to investigations of planetary stability with
numerical simulations. Machine learning methods allow for substantially reduced computational cost com-
pared to numerical simulations, without sacrificing as much accuracy as traditional metrics for stability

characterization.

Future Work

This work serves as another contribution to the growing field machine learning and computing techniques
applied to orbital dynamics, and more broadly, astrophysics. However, the methods used in this work do
pose some limitations that could be addressed in subsequent research.

For one, the 107 year integration timescale is much shorter than the average lifespan of known plan-
etary systems. Exploring the evolution of these planetary systems for longer timescales may change the
performance and interpretation of my classifier. Also important to note is the limitations of the Mordasini
planet population itself. This planet population is only one of many proposed initial distributions of planets;
future work could further explore the performance of this method on different parameterizations of initial
conditions.

In this paper, I present a 2-class classifier, where any given planet is predicted to be either stable or
unstable. However, the nature of orbital fate offers the potential to expand classification capabilities. Beyond
the stable-unstable boundary, I could explore a classifier’s predictive power to distinguish between unstable

and scattering planets. Similarly, this methodology could also be applied to predict specific planet fates
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(predicting ejections, planet-planet collisions, planet-central body collisions, and surviving planets), rather
than just long-term stability or instability.

While my simulations use exclusively single-star systems, of the exoplanetary systems discovered in
the past decade, nearly 60 percent are circumbinary systems (with two stars). The applications of machine
learning to predicting stable configurations in multi-planet circumbinary systems is fairly unexplored (e.g,
Lam & Kipping, 2018), but could be extended to study a wider diversity of systems as presented in this

work.

Broader Context and Implications

The general problem of planetary stability—especially in such diverse, packed systems—is complicated,
chaotic, and computationally prohibitive. The applications of machine learning to orbital dynamics set
the precedent for a fundamentally new way to explore planetary dynamics. There exists a computational
bottleneck in this realm of research, but these machine learning methods drastically accelerate the process
to analytically predict unstable configurations. While this work doesn’t solve the problem of generic plane-
tary stability, I can reliably identify instability in these highly diverse systems in a computationally efficient
manner.

Thus far, the exoplanets discovered have been within a relatively small region of physical space. Yet, al-
ready, nearly half of these confirmed exoplanets have been found in multi-planet systems. As the number of
observed multi-planet exoplanetary systems grows, it becomes less practical to study each one in detail. As-
tronomers will inevitably discover new exoplanetary systems with different orbital configurations; therefore,
methods like those presented in this paper will allow us to understand the orbital evolution and stability of
these diverse, multi-planet systems. More broadly, with an understanding of stability of planetary systems,
this research can help inform the range of planet compositions, configurations, and system architectures that
exist in exoplanetary systems.

With a high accuracy and minimized computational power, methods like those presented in this research
offer potential to analyze planetary stability more precisely and on a larger scale than ever before. The
insight gained on the dynamics of these diverse multi-planet systems could also lead to discoveries about
the formation of planetary systems, as well as their past and future evolution. Not only is this applicable to
the new exoplanetary systems we discover, but also within our own Solar System. With this knowledge of
planets’ formation, evolution, and the underlying physics of their orbital dynamics, we can begin to better

understand our role in the universe.
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